论文摘要 |
The wetland ecosystem is particularly vulnerable to hydrological and climate changes. The Great Xing’an Mountain is such a region in China that has a large area of wetlands with rare human disturbance. The predictions of the global circulation model CGCM3 (the third-generation coupled global climate model from the Canadian Centre for Climate Modeling and Analysis) indicated that the temperature in The Great Xing’an Mountain will rise by 2–4°C over the next 100 years. This paper predicts the potential distributions of wetlands in this area under the current and warming climate conditions. This predication was performed by the Random Forests model, with 18 environmental variables, which will reflect the climate and topography conditions. The model has been proven to have a great prediction ability. The wetland distributions are primarily topography-driven in the Great Xing’an Mountains. Mean annual temperature, warmness index, and potential evapotranspiration ratio are the most important climatic factors in wetland distributions. The model predictions for three future climate scenarios show that the wetland area tends to decrease, and higher emission will also cause more drastic shrinkage of wetland distributions. About 30% of the wetland area will disappear by 2050. The area will decrease 62.47, 76.90, and 85.83%, respectively, under CGCM3-B1, CGCM3-A1B, and CGCM3-A2 by 2100. As for spatial allocation, wetlands may begin to disappear from the sides to the center and south to north under a warming climate. Under CGCM3-B1, the loss of wetlands may mainly occur in the south hills with flatter terrain, and some may occur in the north hills and intermontane plains. Under CGCM3-A1B, severe vanish of wetlands is predicted. Under CGCM3-A2, only a small area of wetlands may remain in the north of the high mountains. |